18 - maximum path sum i

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

maximum_path_sum_i_1

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

maximum_path_sum_i_2

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)

link

cozum ile ilgili ip ucu burada

cevap : 1074

Derleme ortami Visual studio community c++

// project euler problem 18
// yasin tasan --> oct 2016

#include "stdafx.h"

int main()
{
    unsigned int array[15][15] = {
        { 75, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 95, 64, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 17, 47, 82, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 18, 35, 87, 10, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 20, 04, 82, 47, 65, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 19, 01, 23, 75, 03, 34, 00, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 88, 02, 77, 73, 07, 63, 67, 00, 00, 00, 00, 00, 00, 00, 00 },
        { 99, 65, 04, 28, 06, 16, 70, 92, 00, 00, 00, 00, 00, 00, 00 },
        { 41, 41, 26, 56, 83, 40, 80, 70, 33, 00, 00, 00, 00, 00, 00 },
        { 41, 48, 72, 33, 47, 32, 37, 16, 94, 29, 00, 00, 00, 00, 00 },
        { 53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14, 00, 00, 00, 00 },
        { 70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57, 00, 00, 00 },
        { 91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48, 00, 00 },
        { 63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31, 00 },
        { 04, 62, 98, 27, 23,  9, 70, 98, 73, 93, 38, 53, 60, 04, 23 },
    };

    unsigned int var0, var1, n, m, temp[15] = {};

    for (m = 14; m > 0; m--)
    {
        for (n = 0; n < 14; n++)
        {
            var0 = array[m - 1][n] + array[m][n];
            var1 = array[m - 1][n] + array[m][n + 1];

            if (var0>var1)
                temp[n] = var0;
            else
                temp[n] = var1;

            array[m - 1][n] = temp[n];
        }
    }

    printf("max sum = %d", array[0][0]);

    return 0;
}